刘长虹,陈志恒,黄虎.城市短期交通流量预测方法的探讨[J].现代交通技术,2006,(1):57-
城市短期交通流量预测方法的探讨
Discussion on the Method of Short-term Expecting Traffic
  
DOI:
中文关键词:  短期交通流量  神经网络  灰色  拟合  预测
英文关键词:short-term traffic flow  neural network  grey  fitting  prediction
基金项目:
刘长虹  陈志恒  黄虎
上海工程技术大学汽车工程学院,上海仙霞路200336
摘要点击次数: 4337
全文下载次数: 617
中文摘要:
      根据实际观测得到的交通流量数据,运用灰色预测模型、神经网络以及最小二乘拟合等三种交通流量预测模型.对上海市延安东路隧道浦西段入口处短期车流量进行短期的预测。计算结果表明,神经网络模型的精度最高。最后提出一种根据短期交通流量预测结果的人工智能解决交通拥堵的方案。
英文摘要:
      Firstly, with the traffic instruments the traffic data on the tunnel of the East Yanan Road in Shanghai are measured. Secondly, the gray model, neural network and the minimum square fitting are presented to predicting short-term traffic flow. According to the traffic data in real time, the results show these models work exactly and correctly. By comparing with those results, the neural network is the best in terms of exactness. Finally a method of intelligent to solve traffic jam is presented.
查看全文  查看/发表评论  下载PDF阅读器